
1

Java Archive Copy Detection using the Jarprint
Generator
Andrew Runka, M.Sc.

Abstract—The paper introduces the Jarprint Generator: a
copy detection application for Java Archives. The Jarprint
Generator uses a Genetic Algorithm (GA) to determine a best-
estimate of the highest similarity between two presented archives.
This paper covers the implementation details of this application
including a description of the GA used. Two phases of testing are
performed to first ascertain that the application covers the base
functionality required of a copy-detection system, and secondly
to determine the performance quality of the system. The results
suggest that the system is an effective, consistent, and reasonably
efficient means of copy detection.

I. INTRODUCTION

The Internet is an invaluable resource of knowledge and in-
formation, and although freedom of information is a desirable
goal in this medium, protection of the rights of the authors
who provide that information is paramount to maintaining the
Internet as an environment suitable to the development of new
knowledge. Copyright infringement, the unlawful copy or use
of protected information, threatens the rights of these authors
with the potential to turn their works into something they did
not intend and do not condone. Copyright infringement has
been a major issue in software development due to the sim-
plicity of copying and distributing electronic information. This
is further exacerbated in the domain of open source software
development, where raw source code is freely available for
all to see and copy. While often the licenses of this software
dictate free use of this source code to all who would like it,
copyright infringement may still occur when copied source
code is used without adhering to the restrictions of the open
source software license. The aim of this project is to develop
a means of comparing two java archives (jars) to determine
the level of similarity between them. This project uses a two
stage approach to determine similarity. First, each class in each
jar is given a fingerprint based on its composure. Secondly
the class fingerprints are compared using a simple difference
calculation to determine their similarity. In order to ensure
that the class fingerprints are matched ideally between jars, a
search of possible comparisons is performed to determine a
best-match estimate of the organization between the two jar
files. In this way the system is designed to detect jar files which
have been slightly modified (altered, reorganized, extended) as
well as jar files which have been included into larger packages.
The number of permutations of class file orderings within a
given jar file is exponential with regard to the number of class
files. To search such a space deterministically could be quite
costly as the size of the jar file increases. To this end, a Genetic
Algorithm (GA) is employed a to stochastically search the
solution space and provide a good estimate of the best ordering
within a reasonable amount of time.

The remainder of this paper is structured as follows: Sec-
tion II details the background information of both the Copy
Detection problem and the Genetic Algorithm framework.
Following this, Section III explains the system implementation
and experimental details used in this study. Next, Section IV
covers the presentation and discussion of the results that were
found, and finally Section V presents the conclusions of this
study.

II. BACKGROUND

A. Genetic Algorithms

This section introduces the concept of the Genetic Algo-
rithm. For an explanation of the implementation details for
this project see the next section.

Genetic Algorithms (GAs) are a class of search heuristics,
first popularized in 1975 by Holland et al. [1], and have
since been applied to a vast assortment of problems [2],
[3], [4], [5]. The fundamental idea of genetic algorithms is
to iteratively evolve solutions using a conceptualized form
of natural selection. Starting from a population of random
solutions to the problem, GA effectively culls the weaker
sub-optimal solutions, so that the more optimal solutions will
continue to evolve towards the global-best. The advantage of a
GA in these problems arises from its stochastic nature, which
facilitates a balance between exploration and exploitation of
the search space, allowing it to move quickly towards good
areas of search while avoiding being trapped in local optima.
GAs are commonly employed for combinatorial optimization
problems where a deterministic search strategy would be too
computationally expensive.

A pseudo-code framework for GA is presented in Figure 1.
Initialization of a GA consists of creating a random population
of solutions or ‘chromosomes’, which are each representative
of some valid yet typically unsatisfactory solution to the
problem at hand. An appropriate, problem dependent, repre-
sentation must be selected for the chromosomes, such as bit
strings or integer arrays. After initialization, the population
of individuals are each evaluated according to some fitness
function which ranks their solution to the problem at hand.
Following this a new population of individuals are selected.
A common means of performing the selection operation is
with Tournament Selection. Here, k individuals are pulled
at random from the population, and the best of those k is
selected to be in the new population. The best solution found
throughout the entire run is maintained using a technique
called elitism. This dictates that the best solution is carried
from generation to generation without any alteration. Once
the new population is selected, it undergoes some means

2

of recombination. Recombination operators are broadly di-
vided into two categories, crossovers and mutations. Crossover
operators involve combining the solutions of two ‘parent’
solutions to create ‘offspring’. Mutation operators involve a
single individual and serve to further explore the area of the
search space that is local to a given solution by applying
small changes. The main evolutionary loop continues until
some termination condition (typically a maximum duration of
generations) is met.

GENERATE initial population
REPEAT

EVALUATE population
SELECT parents
RECOMBINE parents to produce offspring
JOIN offspring to form new population

UNTIL termination condition satisfied

Fig. 1. Pseudo-code of the Genetic Algorithm.

III. EXPERIMENTAL SETUP

A. Implementation

The implementation of the Jarprint Generator begins with
first dissecting the class files from the jars presented. This is
done using the java zip library. Classes are then parsed using
the java reflect library. This had the unfortunate requirement
of forcing all jar files to this system to be complete, that is,
the system will throw exception to undefined references in a
jar file. For each class a fingerprint is generated based on the
following information:

• The number of each field modifier (public, private, etc),
• the number of each field type (short, int, etc),
• the number of each type of constructor argument,
• the number of each method modifier,
• the number of each method return type, and
• the number of each type of method argument.
The collection of all class fingerprints for an entire jar is

called a ’jarprint’. This makes for a rather large array of
integers, so for human readability each class fingerprint is
shortened down into a hexadecimal sum of its parts, making
the jarprint display as a list of hexidecimal pairs. Using this
information in the jarprint immediately enables the system to
detect similarity beyond obfustication in the form of renaming
classes, methods or fields, as well as from the reordering
of information within a class that may mislead text-based
similarity measures.

In order to determine a similarity comparison, two jar
files undergo the parsing process. Both jarprints are then fed
into a GA to determine the best matching between classes.
The larger of the two jarprints (or a random one if both
are the same size) is kept aside for evaluation purposes,
while reorganizations of the smaller jarprint constitute the
search space of the problem. In this way the implementation
determines the greatest possible similarity between the two jar

files giving it the ability to overlook obfustication in the form
of reordering the jar file or the removal or addition of classes.

Each individual in the GA population is initialized as
a permutation of the order of the class fingerprints from
the smaller jarprint. GA individuals are padded with empty
fingerprints to make the smaller jarprint equal the size of the
larger jarprint if necessary. This is done so that evaluation
of the similarity between jarprints can be done on a class
by class basis. Each ordering (or GA individual) is compared
with the larger jarprint and given a difference score. This is
simply the sum of all differences for each element in each
class fingerprint, as seen in formula 1.

fitness =

C∑
c=0

E∑
e=0

|Jce − jce | (1)

where J is the larger jar file, j is the smaller jar file, C is the
number of classes in J and E is the number of elements in
class c. Padded classes are ignored in this calculation.

Once each individual is evaluated, selection proceeds us-
ing the tournament selection method. The best match found
throughout the duration of the search is maintained using
elitism. Each individual is then modified using the swap
mutation operator, where two class fingerprints in a solution
exchange locations. No crossover is utilized in this implemen-
tation. Execution proceeds to loop through these operations
until a set number of generations has passed or until an exact
matching (zero difference score) has been found.

One final yet important note on the GA implementation:
in an effort to improve the speed of convergence of the GA,
class fingerprints that have been lined up as exact matches are
’locked’ in place. This means that those classes (or alleles)
are exempt from further mutation. This reduces the amount
of redundant mutations by narrowing down the search space
over time consequentially leading to increased speed and
consistency.

Once the matching is complete, the final similarity percent-
age is calculated from the best difference score found via
formula 2. This is done by normalizing the difference score
over the sum of all values in the smaller jarprint. While this
does have the potential to be greater than 1, it is assumed that
differences that large denote distinct jar files and are given the
value of 100% difference. The similarity percentage then the
inverse of the difference percentage.

Similarity% = 1−min(1,
best fitness∑C
c=0

∑E
e=0 jce

) (2)

where best fitness is best result returned from the GA calcu-
lated as in formula 1, j is the smaller jar file, C is the number
of classes in j and E is the number of elements in class c.

B. Experiments

Experimentation was broken down into two phases. The first
phase performs the initial testing in order to ensure that basic
requirements of the system are met. The second phase is used
to determine the accuracy, consistency, and efficiency of the
system.

3

Initial testing of the system was performed to test that
the system meets the basic requirements for copy detection
software. That is, it grade similar files with a high similarity,
while grading dissimilar files with a low similarity score.
Testing at this phase involved 3 main similarity comparisons:

1) Using two identical jar files
2) Using two distinct jar files
3) Using two similar or contained jar files
Ideally the system should conclude 100% similarity in case

1, a low similarity (0%-50%) in case 2, and a high amount
of similarity (greater than 80%) in case 3. The jar files
used in these tests are actual jar files containing libraries or
applications worth of class files. This was done in an effort to
demonstrate the real life applicability of this implementation.

The second phase of testing involved the creation of a series
of archives. These files were filled with class stubs, that is
classes with methods, constructors and fields, but no operable
code. This was done in order to have a highly customizable
array of archives tailored to the needs of testing. The testing in
this phase is aimed at gaining insight to the performance of the
implemented system. Firstly to test the accuracy of the system,
50 randomly generated classes were created and partitioned
into 25 archives of 25 classes each. This was done as follows,
the first archive contained the first 25 classes. The second
archive contained the classes 2-26, the third contained 3-27,
and so on until the final archive which contained classes 26-50.
In this way each successive archive was then a single swapped
class different from the previous archive. This array of archives
was then used to determine the accuracy by comparing the first
archive to every other archive.

Since a stochastic mechanism is used to determine similarity
it is important to determine how consistent the results are in
order to gauge the reliability of a single comparison. To do so
several archives of ranging in size from 50 to 500 classes were
generated and compared to determine the amount of variance
from run to run. At the same time, the duration for comparison
of these files is used to examine the relative speed with which
these archives can be compared.

IV. RESULTS AND DISCUSSION

All experiments were written in Java and run on a Core
i7-820QM Quad-core mobile processor with 4GB RAM in a
64-bit Windows7 environment. All results are averaged over
15 runs.

A. Phase 1

Results begin by testing the basic requirements of the
system. In the simplest case, the system should detect that
two identical files are 100% similar. To test this, three jar files
were selected. The first is the jar file for the ThoughtStack
application [6] containing 30 classes, denoted in shorthand
as TS(30). The second jar file is the implementation of
this project itself (Jarprint Generator), containing 58 classes,
shortened to JPG(58). Third is the jar file for the ECJ library
[7] containing 403 classes, denoted ECJ(403). The results of
this experiment are displayed in Table I.

Jar1 Jar2 Similarity Duration
TS(30) TS(30) 100% 1 sec
JPG(58) JPG(58) 100% 4 sec
ECJ(403) ECJ(403) 100% 263 sec

TABLE I
RESULTS OF COMPARING IDENTICAL JAR FILES

All three files were matched to 100% similarity when
compared to themselves, demonstrating the effectiveness of
this strategy against the base-case comparison. The duration
to do so, however, increases exponentially with the number
of classes in the jar file. This is largely due to the fact that
the swap operator employed here moves a single class at each
operation. So while it is a constant time operation, it must
be performed many more times in order to accommodate the
increased size of the search space. The issue of search speed
(efficiency) is addressed in the results of the second phase of
testing later in this section.

The second part of phase 1 testing requires the developed
system to distinguish between two distinct jar files. That is,
given two independently developed (non-copied) jar files the
similarity comparison should result in a low score. The same
jar files as above are used here. The results of this experiment
are displayed in Table II.

Jar1 Jar2 Similarity Duration
JPG(58) TS(30) 20.63% 13 sec
ECJ(403) TS(30) 23.11% 55 sec
ECJ(403) JPG(58) 22.68% 79 sec

TABLE II
RESULTS OF COMPARING DISTINCT JAR FILES

All three comparisons between distinct jar files resulted in
low similarity scores. A score of zero is unlikely due to the
fact that all classes share the same basic structure, thus it is
expected that some similarity is seen between large groups of
classes. The maximum execution time in this set was below
2 minutes, which is a bearable duration for large comparisons
that would be required only rarely in practice.

The third experiment in phase 1 concerns detecting similar
material. To this end three versions of the Jarprint Generator
(labelled JPG1, JPG2, and JPG31 in order of their release)
were set aside throughout its development and are compared
here. Alterations between versions of the Jarprint Generator
consist of modifications to the bodies of methods and method
calls (both of which are overlooked in this implementation),
removal and addition of class files, and tweaks to method and
field declarations. A fourth comparison attempts to detect the
GA component from within the Jarprint Generator implemen-
tation. The results of this experiment are displayed in Table
III.

The results of this experiment demonstrate that highly
similar files are detected as such. Changes between versions
of the Jarprint Generator code were not significant enough to
deceive the similarity comparison. Interestingly, the compari-
son between JPG1 and JPG3 results in a lower similarity than

1JPG3 here is equivalent to JPG(58) from the previous experiments

4

Jar1 Jar2 Similarity Duration
JPG1 JPG2 99.58% 12 sec
JPG2 JPG3 99.52% 13 sec
JPG1 JPG3 98.96% 11 sec
JPG3 GA 100% 2 sec

TABLE III
RESULTS OF SIMILAR DISTINCT JAR FILES

between JPG1-JPG2 or JPG2-JPG3. This suggests the system
has a degree of accuracy to its measurement that is studied
in more detail in the section below. Finally, a comparison of
the GA component with the JPG3 code which contains the
GA component resulted quickly in a 100% match illustrating
that this system is capable of detecting classes that have been
added to larger projects.

The results of phase 1 of experimentation all followed
directly with the expected behaviour of the system. This
implies that system behaves as expected. That is copies and
similar files are graded with a high similarity while dissimilar
files receive a low similarity percentage. The next task is to
gain some insight towards the quality of the system.

B. Phase 2

The second phase of experimentation aims to analyze the ac-
curacy, consistency, and efficiency of the system. As described
above in Section III, accuracy is measured by slowly increas-
ing the disparity between compared archives. The previous
phase of testing demonstrated the system capable of accurately
determining exact matches where both archives contained the
same classes. To gain a sense of the accuracy of the system, the
calculated (actual) similarity versus the (expected) similarity
determined by the ratio of class files in common between the
two archives are measured and contrasted. The results of this
test are displayed in Figure 2.

Fig. 2. Comparison of the similarity calculated using the Jarprint Generator
vs. the similarity measured as a ratio of shared files

As seen in the above figure, the accuracy of the system (the
distance between the actual and expected trend lines) decreases
as the number of shared classes decreases. Specifically the
implemented system overestimates the amount of similarity.
This is due to the system’s ’optimistic’ approach. That is,
it attempts to find the greatest amount of similarity between
the two compared archives. Given that the archives in this
comparison are randomly generated there is no guarantee on
amount of dissimilarity between any two classes, and so the
system is likely to pair classes together that exhibit some

similarity without any actual relation between them. With this
in mind the accuracy of the system, while not perfect, is
reasonable enough to represent the likelihood of copyright
infringement to a human observer. The potential for false
positive identification may be an issue using this method of
copy detection. Given 48% common material between the
two compared archives the implemented system detected an
average of 66.67% copied material. Commonalities between
the structure of all class files may account for this discrepancy.

To examine the consistency of the system’s similarity mea-
sures, this paper examines the standard deviation amongst mul-
tiple comparisons of the same archives. This test is performed
for comparisons of multiple sized archives to determine if any
correlation exists between the consistency and the comparison
size. The results are provided in Figure 3.

Fig. 3. Similarity calculations for varying sizes of archives. Vertical lines
indicate standard deviation.

The uneventfulness of this graph is a positive indication
of the consistency of the implemented system. The standard
deviation per experiment is never greater than 0.4%. Over all
experiments neither the standard deviation nor the similarity
calculation itself show any significant correlation with the size
of the comparison.

Finally, the efficiency of the system was examined over the
same experiments as above. A graph of the trend of average
execution times can be seen in Figure 4.

Fig. 4. Duration taken to compare varying sizes of archives.

The curve of the above graph indicates the level of efficiency
of the system. It appears the duration of execution remains lin-
early correlated with the size of the archives being compared.
While the size of the problem increases, so to do the number
of swaps required to match each class. Although a constant
time comparison would be ideal, such an algorithm is unlikely
to exist.

5

V. CONCLUSION

The previous section suggests that the Jarprint Genera-
tor is an effective means of performing copy detection for
Java archives. The base functionality testing indicates that
the system is capable of distinguishing between copied, and
not-copied content, while the performance testing suggests
that the Jarprint Generator is both consistent and efficient.
Accuracy was deemed to be of slight concern due to the
systems tendency to detect the unintended similarities between
distinct files, which creates the possibility for false positives.
However, this risk appears to be within the realm of human
comprehension and precaution.

One weakness of this approach is that it will have difficulty
identifying copied material, when the number of copied classes
is very small in comparison to both the source archive and the
destination archive. In this case the dissimilarity of the major-
ity of classes will have a greater impact on the similarity score
than the few copied classes. Such a situation should however
result in a greater similarity than an identical comparison with
no copied content.

Future work should attempt to improve the accuracy of
the system by revising the calculation of the final similarity
measure to account for the common attributes of all class files.
Also, a deconstructive approach to the similarity comparison,
while potentially more costly, could yield a more informative
report on specifically which classes are identified with high
similarity. Finally, the use of more diversifying genetic oper-
ators could yield faster estimates, with an acceptable loss in
accuracy.

REFERENCES

[1] J. Holland, “Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence.”
1975.

[2] D. Beasley, R. Martin, and D. Bull, “An overview of genetic algorithms:
Part 1. Fundamentals,” University computing, vol. 15, pp. 58–58, 1993.

[3] R. Haupt, S. Haupt, and J. Wiley, Practical genetic algorithms. Wiley
Online Library, 1998.

[4] Y. Rahmat-Samii and E. Michielssen, Electromagnetic optimization by
genetic algorithms. John Wiley & Sons, Inc. New York, NY, USA,
1999.

[5] B. Ombuki-Berman, A. Runka, and F. Hanshar, “WASTE COLLECTION
VEHICLE ROUTING PROBLEM WITH TIME WINDOWS USING
MULTI-OBJECTIVE GENETIC ALGORITHMS,” in Proceedings of the
Third IASTED International Conference on Computational Intelligence.
Acta Press Inc,# 80, 4500-16 Avenue N. W, Calgary, AB, T 3 B 0 M 6,
Canada,, 2007.

[6] A. Runka, “Thoughtstack,” November 2010,
http://www.cosc.brocku.ca/ ar03gg/ThoughtStack/.

[7] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici,
K. Sullivan, J. Harrison, J. Bassett, R. Hubley, A. Chircop, J. Comp-
ton, W. Haddon, S. Donnelly, B. Jamil, and J. O’Beirne, “Ecj: A
java-based evolutionary computation research system,” November 2010,
http://cs.gmu.edu/ eclab/projects/ecj/.

